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Abslraet. Anharmonic corrections to lhe phonon and magnetophonon SpectNm of the 
two-dimensional eleclron solid at zero temperature are investigated. A selfconsistent 
phonon theory is used and the cubic anharmonic MrreCtion coming from seeond order 
perturbation theory is included. This correclion is larger than the self-consistenr one, 
and yields a decrease in the phonon spectrum. Lindemann's ratio and corrections to the 
tolal energy of the solid are calculated as well. 

1. Introduction 

There has recently bcen great interest in the quantum two-dimensional electron solid 
and its melting propenies, with and without a perpendicular magnetic field. Willett 
er al [l] found that, in the low-density limit, the conductivity of GaAs heterojunc- 
tions in a strong external magnetic field is activated in character and interpreted 
this as the presence of a solid phase. Jiang er al [2] observed re-entrant melting 
behaviour close to a filling factor of 1/5. Andrei er al [3] observed anomalies in 
long-wavelength acoustic wave absorption around the same filling factor. Goldman 
er a1 and Williams er al [4] observed non-linear conductivity behaviour at low filling 
factors. All these experiments in high magnetic fields suggest the existence of a two- 
dimensional quantum electron solid. 'Matar er al [5] performed fixed node Green 
function Monte Carlo simulations on the 2D quantum electron fluid and solid. They 
found a solid-fluid transition at rr = 37 with a mean square displacement of about 
y = 0.25. This compares favourably with earlier variational Monte Carlo calculations 
by Ceperley [SI, who found the transition at r, = 33 with the same Lindemann ratio. 
Experiments at zero field were performed about ten years ago on the surface of liq- 
uid helium, but these experiments were probing the Wigner crystal in the classical or 
finite temperature regime where there is no long-range order present in the system. 

?b understand and assess the anharmonicity that may become important near 
melting, we studied the self-consistent phonons of the electron lattice together with 
their cubic-anharmonic corrections. 

Let us introduce some definitions and notations first. The kinetic energy of the 
2D electron system, measured in units of Rydberg, is proportional to l/ra where 
.air: = l / n ,  and a, = h2/me2 is the Bohr radius and n, the electron density. The 
potential energy is proportional to l/r, and therefore at low densities or large rs the 
kinetic energy becomes negligible, and since correlations between electrons become 
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important, the lowest energy state will be realized by electrons sitting on a regular 
lattice. This was Wigner's original argument [7l that predicted the solid phase at low 
densities. When rn is lowered, the kinetic energy tends to delocalize electrons more, 
and anharmonic effects will become important near the melting point. 

For a solid with Lmdemann ratio 7, the exchange correction to the energy at 
melting is of the order of exp(-1/2y2). For y - U)%, this is about 4 x and is 
negligible compared to the direct interaction. Therefore, statistics do not affect the 
energy of the solid and will be neglected in this work. 

In the next section, we describe the self-consistent phonon theory and its general- 
ization to the case of a magnetic field, as well as a derivation of the cubic correction. 
In section 3 we discuss the results and show dispersion graphs of phonon and mag- 
netophonons of the electron crystal at different densities and filling factors. 

K E$iurjuni and S T Chui 

2. Theory 

We first recapitulate the formalism at zero field. In a real system the Hamiltonian is a 
sum of the kinetic energy of the particles and their potential energy. In a solid where 
the average position R, of the particles is on a regular lattice, one usually expands 
the potential energy about the equilibrium position of the particles as: 

where 

Ho is the harmonic Hamiltonian and 6H the anharmonic one. The force on particle i, 
E,! Vv(Rii) ,  is zero. Thus the linear term C E .  V v  is zero. Here V@) v(Rij) represcnts 
the tensor (3'/tlRR,8Rp) v(R = Ri,) where v(r)  is the pair potential. : represents the 
double contraction of the latter tensor with the vectors s,. R; refers to the lattice 
sites and E, = E(&)  to the dynamical displacements about these sites. In terms of the 
normal modes of H,, we have: 

Here the operator uqA (utA) annihilates (creates) a phonon of wavevector q. polariza- 
tion X and frequency w$. e 

Keeping only H,, constitutes the harmonic approximation and it is an exactly 
solvable problem. This approximation works well in the case where the average dis- 
placements of the atoms about their equilibrium position do not exceed 5%. However, 
since the mean square displacements are inversely proportional to the square root of 

is the direction of the polarization. 
.qA 
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the mass, the deviations will be large for light particles, and therefore anharmonic 
terms will be important. 

In addition to the self-consistent treatment, we will also calculate the third-order 
term H3, in second-order perturbation theory. This cubic anharmonic correction is 
known, from previous studies [8,9], to provide for a correction comparable to that 
from the self-consistent phonon results. 

21. Self-consistent anharmonic corrections 

A self-consistent phonon calculation for the two-dimensional Wigner solid was per- 
formed by Platman and Fukuyama [lo] in order to find the melting point of the 
system. This calculation uses the Debye approximation so that sums can be done 
analytically. The Ewald sum technique [ l l ]  was not implemented to deal with the 
long-range Coulomb potential, in that sense it was not an exact treatment The self- 
consistent phonon theory has been successfully applied to rare gas solids and also 
to the 3D Wigner solid [SI, where the Ewald summation technique was used. This 
calculation has been generalized recently to ZD rare gas solids [9]. The phonon dis- 
persion for Ne was found to display a large correction due to the quantum zero point 
vibration. This suggests the importance of quantum fluctuations in the melting of 
lighter elements such as He4, [12] H,, [13] and He3 [14]. We now describe and apply 
this theory to the ZD Wigner crystal. The only difference in the case of the Coulomb 
interaction is its long range, and one has to properly take care of the summations over 
the lattice sites. Using this theory, one can calculate the self-consistent second-order 
vertm (V@) v(R + 5 ) )  and more generally the ground state average of any function 
of the dynamical variable t. 

The ground state self-consistent phonon wavefunction is a Gaussian which involves 
frequencies that are calculated from an averaged dynamical matrix e. 

where E,, = xi l / f l  e-QRb ti - eql\ is the normal mode coordinate. 
This dynamical matrix itself is evaluated in the ground state of the system. 

R 

The ground state average is the average over EqA having a Gaussian distribution 
of width (h /2mwqA)1~z which is the mean square displacement of a 1D harmonic 
oscillator; more precisely, the average of any function F of the variable 5 is given by: 

where 
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So one can start from the set of quasi-harmonic frequencies of the solid, w$ (ob- 
tained from (Sf with < = 0), use them in (7) to get A@ to do the average in (5), 
and diagonalize the self-consistent dynamical matrix to obtain new frequencies; these 
frequencies can themselves be used as input in (7) and so on, until convergence of 
this iteration process. In (6). the average of any odd function of ( is zero, and in 
an expansion in powers of ( only even powers contribute. These SCP frequencies can 
be expanded in power series of rs-'Iz; the leading-order term which is the harmonic 
frequency, is proportional to rS-'l2, and each higher-order term has an additional 
power of rs-'lz. 

We can also deduce the correction to the total energy by summing all SCP fre- 
quencies over the first Brillouin zone and subtracting off the harmonic total energy. 

Because of the long-range nature of the Coulomb potential, the sum in ( 5 )  is 
formed of terms like (1/(R + ()'), and hence is slowly convergent The usual SCP 
procedure needs to be modified. The bare Coulomb interaction (< = 0) can be 
summed exactly by use of the Ewald sum technique. We therefore Fourier transform 
only the difference between the renormalized and the bare second-order vertex, to 
which we add the bare dynamical matrix. 

K Esfarjani and S T Chui 

D S c P ( q )  = P y q )  + C'(1 - e@) { (v%(R + E ) )  - v%(R)}. 
R 

The same trick is used to compute the third-order vertex needed for the cubic- 
anharmonic correction 

w g ( k l , / c 2 , ~ )  = C ' ( e * l ~ + e * ~ l + e * a ~ )  ~ ( 3 ) v ( ~ )  (8) 

+ C ' ( e " l R + e * ~ l + e * a )  { ( V [ ~ ) ~ ( R + C ) )  - V ( ~ ) V ( R ) ) .  (9) 

R 

SCP - Ewald w3 -w3 

Although w3 has terms proportional to l /R4,  the difference in curly brackets is pro- 
portional to 1/R6 and converges much faster. 

21.1. The cuse ofu magnelicfiefd. In a magnetic field the harmonic Hamiltonian H, 
is changed to: 

R 

It is still a quadratic function of ( and can be exactly diagonalized 1151. The normal 
modes are given by: 

where 6,, (pd,) is the magnetophonon annihilation (creation) operator of wavevector 
p and polarmtion p (longitudinal or transverse), r,, is a 2 x 2 matrix: 
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where wuA are the phonon frequencies of the Wigner crystal in absence of a magnetic 
field an8 wc is the cyclotron frequency, given by wc = eBfm. The magnetophonon 
energies are given by: 

+ for p = longitudinal, - for p = transverse. 

the usual normal modes and dispersion relations are recovered. 

redefined properly as a function of the new normal modes: 

In the zero field limit, one can see that w -* wu, rip - dAr and Ekr -* b,&, and 

The procedure will be therefore the same as before, only the matrix Ax has to be 

Note that A-1 satisfies (A-')"@ = (A-')@"*, but since we have C,r,,,,r;A,, = S P l p l ,  
A is real and therefore symmetric 

So the set of equations that are iterated in this case are: (13) to define A, (5) 
and the use of (6) to define the dynamical matrix, then the latter diagonalized yields 
U:,. The equation (12) defines the new frequencies that will be reused in (13) and 
now the process is iterated until convergent. 

2.2 The cubic anharmonic correction 

As its name indicates, this term comes from the third-order term in (3)  and will be 
evaluated in secondader perturbation theory. Let us first give the expression for the 
correction to the total energy: 

This energy is easily evaluated by use of equations (3), (4) and (8). One finally 
finds 

where 

V(k,,k,,k,) = E' (eYtR + e'a + e") eEef2el, V,V@V,v(R) (16) 

ki represents the mode (k i ,  X i )  and the sum is over the vectors and their polarization. 
@.E3, is obviously negative, since it is a secondader correction to the ground state 

R 

~~ 

energy. 
The correction to the phonon frequencies can be calculated by using the following 

formula: 
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and 
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t 19) =a , IO) .  
By definition, A(q) measures the difference between the correction to the energy of 
the crystal plus one phonon and the correction to the energy of the perfect crystal. 
It is therefore the correction to the energy of a single phonon of momentum q and 
polarization A. Using the same formulas as above, we get: 

(18) ) .  X IV(kl>k2>4)I2 ( l +  
wkl wkt wq *kt + wkz + wq wkB + wkr -wq 

This expression is identical to the shift A(4,w) obtained by Green function tech- 
niques [16,9], where w is replaced by the on-shell frequency wq. The first denomi- 
nator in the above expression, where the three frequencies are added, corresponds 
to intermediate states having 4 phonons I k, ,k , ,q ,q);  and the second denominator 
corresponds to 2-phonon states I k, ,  kZ) .  

221. The case of a magneiicfield. In a magnetic field, only the normal modes have 
changed. The rest of the calculation is the same as before From (17) we get: 

v ( k l k  ,kZ11Z,qp)rk,A,~rrk~Ar,2rqAp 1' ( 
+Ek,b 1 + Ep WIPZ (wkjpI  wkzpz wqp)"2 

(19) 
+IC 

Unless explicitly mentioned, the label k specifies both the wavevector and the polar- 
ization; i.e. k; = (ki ,Ai) .  

The results for the shift mentioned above include only the shift due to the cubic 
term H3 where only V ( 3 ) ~ ( R )  appears. Since we are dealing with the SCP theory 
that sums terms to all orders, instead of the bare cubic vertex, we will use the SCP 
vertex given by (V(3) v(R + E ) )  and calculated from (9). In order to avoid divergence 
problems due to the second denominator in A(q) ,  we will replace wq by zero; this 
means that we calculate the sialic shift of the single particle energies A(q,w = 0). 
The results, are not very different from A(q ,w , ) .  

3. Numerical results 

If one wants to expand quantities like the Lindemann ratio or the total energy in 
powers of some expansion parameter, one can basically consider the hvo following 
limits. 
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(a) The high field limit defined by wc > q, = (8e2/ma3)1/2 or r,u2 < 3.4. In this 
case U is the only relevant expansion parameter and one can write all dimensionless 
physical variables as a function of U, and expand them in powers of U; the U -+ 0 
limit being the classical l i t  of point particles. 

(b) The low field limit defined by we < wu or rsu2 > 3 .4  In this case all physical 
quantities can be expanded in powers of l / r ,  only. The limit r, - 00 being the 
classical case. 

In both cases (a) and (b) anharmonicity can be measured by the Lindemann ratio 
7 = (((2)/a2)1/2 which has the following expression in the harmonic approximation. 
Case (a): 7 = 0.60~~1~. Case (b): 7 = 0.71r;'14. 

In figures 1-5 we display the phonon and magnetophonon dispersion relations 
of the w) electron crystal from zero to high fields and at different densities. The 
self-consistent correction increases the phonon frequencies, and the cubic correction 
decreases frequencies to even below the harmonic values. These corrections increase 
with the filling factor and decrease with r, in both the high and the low magnetic field 
limit. 

r J X 

Figure 1. w is in unils of 
WO = (&2/m3)'12. The harmonic. self-consistent and cubic phonons are represented 
r q e l i v e l y  by Ihe solid, lhe broken and the dotted curves. 

Phonon dispersion relalions for r, = 41 and B = 0. 

Figure 1 shows the zero field case at rs = 41, a density close to the melting of the 
Wigner crystal. Even close to melting, the anharmonic correction is only around ten 
per cent and quite small. This is a characteristic of soft potentials. In figures 2 and 3 
we show the two magnetophonon branches in the high field limit: rJ = 10,u = 0.2 
( rp2  = 0.4); the system is presumably in the solid phase but near melting. Again the 
anharmonic corrections are small. The frequencies are measured in units of wi/w,, 
therefore if they-intercept is approximately 9, then the cyclotron frequency divided by 
wo is equal to 3. The case of intermediate fields where r p 2  - 3.4 jS shown in figure 4 
rr = 32 and U = 0.32. Figure 5 corresponds to U = 0.5 and rs = 10, parameters 
presumably characterizing the liquid phase. Anharmonic corrections become more 
important at this larger filling factor. 

3.1. Calculation of lhe total energy 

We have also calculated the total energy of the system in the following two 
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10 

9.5 - 

WO 9 - 

0.5 - 

0 

r J .  X I 

F@R 2. Transverse magnetophonon dispersion relations in the high field limit. r, = 
10,v = 0.2. w is in mils of wi /wc .  The harmonic, self-consistent and cubic phonons 
a m  represented respectively by the d i d ,  the broken and the dotted c u w a .  

, , .. . . . . . . .. ..... .__ . ..,, '.. ... 

.' 

-/ 

F@m 3. Longitudinal magnetophonon dispersion relations in the high field limit. 
is = 10,v = 0.2. w is in units of w,'/w,. me harmonic, selfconsislent and cubic 
phonons are represented respectiveiy by the solid. the broken and the dotted curyes. 

different ways. 
(i) By using a perturbation expansion in powers of l/r, (or v in the high field 

l i t ) .  These results are displayed below. 
(E) By using the self-consistent method. The corresponding results are shown in 

tables 1 and 2. 
In the zero field limit (or case (b)), the total energy per particle, expressed in 

units of Rydberg= e2/2a,, has an apparently convergent lhylor expansion in a power 
series in l/rj'''): 

+. . .  . (20) 1 +- - - E - e' ( 2.212205 + 1.62744 0.0824 
N - G  rs r. 312 r,' 

The lirst term is just the configuration energy of an electron hexagonal lattice, (see 
Bonsall and Maradudin 1111) where the energy of a uniform background has been 



Anharmonic corrections Io the 2D electron lattice 5833 

Figure 4. r. = 
32, Y = 0.32. w is in units of 4 /we The harmonic, s e l f con~ i~ ten t  and cubic phonons 
are represented respectively by the solid, the broken and the dotted cuwef 

Magnetophonon dispersion relation in the intermediate field limil. 

3 

2 

WO 

1 

0 
r J X 

Figom 5. r. = 
10," = 0.5 (liquid phase). w is in units of w,fw,. The harmonic, selfconsistent and 
cubic phonons are represented respectively by the solid, the broken and the dotted 
NNef 

Magnetophonon dispersion relalion in the intermediate field limil. 

subtracted. The second term is the zero point energy (harmonic approximation); and 
the thud term is the sum of a positive quartic energy of 0.40% (H4 evaluated in 
the harmonic ground state), and a negative cubic energy of -0.3262 (H3 evaluated 
in second-order perturbation theory). All these three terms can be evaluated as 
accurately as one wants; within the given significant figures they are all accurate. The 
remaining terms in the expansion, corresponding to higher-order corrections, can be 
estimated by using a fit to the self-consistent energies discussed below and shown in 
tables 1 and 2, but in higher orders the SCP calculation does not include all diagrams 
and hence one can only get an estimate of the next terms. 

Equation (20) compares well with the results obtained by a non-linear least- 
squares fit to the Green function Monte Carlo data 151. 

(21) 
E m = -  2.2122 1.6284 0.0508 -- ( r, + ~ 3 t 2  N b" r, 
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In the high field limit (or case (a)), the total energy per particle, expressed in 
units of e2/lc can be expanded in powers of Y in the following way [17,18]: 

E e2 
(-0.782133~'/~ + 0 .24101~~/~  + 0.087d/' + . . .), z=7; 

The same definitions apply for the three terms. Only the second term is just the 
potential part of the zero point energy (the kinetic energy being quenched to hw,/4) 
or, in other words, it is the ground state average of the following term: 

ij 

The last term is the sum of a positive contribution of 0.16 [17] and a negative 
contribution of -0.073 [lS]. 

In our perturbation expansion the quartic and the cubic terms are of the same 
order, i.e. they both have the same power dependence in rs or Y .  The quartic term 
confining more the harmonic oscillator wavefunction increases the harmonic energy. 
On the other hand the cubic term being a second-order correction to the  ground state 
energy is always negative. As for the self-consistent corrections one can say that at 
least the correction after thefirsr iteration leads to an increase in the harmonic energy, 
however the sign of the iterated result is not predictable. The same arguments apply 
of course to the magnetophonon dipersion relation: the self-consistent correction is 
usually positive whereas the cubic one is negative since it is a second-order correction 
to the ground state. 

Table 1. Selfconsistent lotal energies per particle in units of e2/200 at zero field as a 
function of r'. 

41 0.3395~10-~ CM72 -0.4061 
50 0.2505~10-~ 0.4754 -0.4034 
55 0.2161~10-~ 0.46h5 -0.4012 
82 0 1170x 0.4539 -0.3798 
200 0.303xlO-' 0.4388 -0,353551 

ZlOCO 0.2904~10-~ 0.4322 -0.3281 

Table 2. SelfGnsistent total energies p" particle in units of c2/& for r, = 20 as a 
function of v.  

0 5  0.6394x10-' 0.0530 -0.om 
0.32 0.3980~ 10-1 0.W85 -0.0379 
0.2 0 3 2 1 5 ~ 1 0 - ~  0.1638 -0.0583 
0.1 O.SO~ZXIO-* o.mz  -0.0709 
081  0.2449xlO-' 0.2168 -0.0733 
0.001 0 .7686~10-~  0.2625 -0.0730 
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The self-consistent total energies are displayed in table 1 in the zero field case for 
different values of rs ranging from 41 to 20000, and in the high field case at r, = 20 
and for U ranging from 0.5 to 0.001 (table 2). At very high r, or very low filling 
factors our numerical results are not as accurate due to the subtraction of two big 
numbers. 

4. Conclusion 

The static HartreeFock theory used by Yoshioka and Lee [19] predicted a gap in 
the excitation spectrum of the 2D electron system considered as a charge density 
wave. This can be interpreted as an effective Einstein frequency of the solid. Re- 
cently C8t6 and MacDonald [20] improved this calculation by using a t ime-depdent 
Hartree-Fock theory which yields a gapless dispersion relation very close to the mag- 
netophonon spectrum. This calculation is useful pedagogically, in that it clarifies 
the limitations of the Hartree-Fock calculation. Their energies are always slightly 
above the harmonic values whereas the present calculation indicates a lowering when 
the cubic anharmonic correction is included. The TDHF is a different approxima- 
tion, in that, the anharmonic terms are weighted by the direction and magnitude of 
the wavevector q. In addition, the energy denominators of the intermediate states 
are different. Thus the cubic anharmonic correction discussed here occurs with a 
negative energy denominator whereas in the TDHF approximation the corresponding 
energy denominator is dominated by the harmonic values of the one phonon state. 
In other words, the TDHF does not yield the correct perturbation expansion for small 
displacements especially for the cubic term, and therefore it does not give the correct 
anharmonic correction for very low fillings. It is this cubic correction that provides 
the lowering of the phonon energy in the present context. 

Another limitation of this calculation is its applicability only to very high fields 
(U (< 1) whereas the SCP + cubic treatment can be done for all values of rs and v. 

One can generally say that, unlike in a HF theory, a phonon wavefunction contains 
correlations between the particles and is therefore a better approximation for the solid 
as confirmed by the calculation by Lam and Girvin [17] which yields a lower energy 
than the HF theory. 

It is well known that for quantum systems the melting occurs for a value of the 
Lmdemann ratio about three times larger than the classical value of 0.1 [21,22]. 
Using the. following criterion for zero temperature melting one can get an estimate 
for the critical values of rs and U. 

For ymeains = 0.3 one finds, within the harmonic approximation, that in the zero 
field limit r: = 31.4 and at high fields U' = 0.25. These values are very close to 
recent estimates [5,6,21] and experimental values [2,4]. 

To summarize, using the SCP theory, we have calculated anharmonic corrections 
to the single particle and total energies of the 2D electron solid with and without 
a magnetic field. In the experimental situation corresponding to 2 6 rr 6 3 and 
0.1 6 v 0.5 the SCP correction to the phonon frequencies is roughly about 10% 
and the cubic correction about -20% of the harmonic values. However for the total 
energies the SCP corrections are slightly larger. One can notice that even near melting 
the anharmonicity of the solid, although causing the melting, is a small correction. 
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